

High-Impact Infrared Science with 4m telescopes

Reynier Peletier

Kapteyn Institute, Groningen

The Milky Way at Various Wavelengths

The James Webb Space Telescope (launched in 2014), the next Hubble Space Telescope, will be an Infrared telescope.

Why in the near-infrared?

- to detect galaxies at very high redshift
- to detect planets (cool objects)
- to study star formation (looking through the dust)

One problem:

The sky in the IR is bright and variable.

This is not a problem any more in the NIR.

infrared extinction is dominated by molecular absorptions, mostly of H_2O and CO_2 \rightarrow observations are only possible in a number of 'windows', designated by I, J, K, L, M, N, Q

WAVELENGTH, & (um)

Detection Techniques '09 - JWP - p9

thermal atmospheric emission

Large Modern Infrared Facilities:

Telescope	Instrument	Field Size	Completion Year
UKIRT	WFCAM	40'	2005
ESO/VISTA	Nircam	1.5^{o}	2009
ESO/VLT	HAWK-I	14'	2007
SDSS III	APOGEE	3^o	2011
	NIR Spectrograph		

UKIRT- a telescope used for Surveys

DR8: UKIDSS is 60% released, 75% observed

Large Area Survey	LAS	ҮЈНК	18.2K	3792 s.d.	262n	ExGal
Deep Extragalactic Survey	DXS	JK	20.8	31	118	ExGal
Ultra Deep Survey	UDS	ЈНК	22.8	0.77	296	ExGal
Galactic Plane Survey	GPS	ЈНК	18.8	1851	186	Gal
Galactic Clusters Survey	GCS	ZYJHK	18.5	1069	84	Gal

Large Area Survey	SDSS near-ir photom, Y dwarfs, z=7 quasars
Deep Extragalactic Survey	Multiwavelength fields, the Universe at 1 <z<1.5< td=""></z<1.5<>
Ultra Deep Survey	Multiwavelength field SXDS, the Universe at $z=3$
Galactic Plane Survey	Galactic-plane atlas -5 <b<+5< td=""></b<+5<>
Galactic Clusters Survey	Universality of the stellar IMF

Survey telescopes at ESO

OmegaCAM, Optical

VISTA, Infrared

VISTA Surveys

VISTA (dedicated 4m in Paranal, Chile)

Survey	Area [deg ₂]	Filter	Magnitude limit	Limit Measure
Ultra-VISTA	0.73 (ultra-deep)	Y	26.7	5σ (AB)
		J	26.6	
		Н	26.1	
		K_s	25.6	
2		NB	24.1	
VHS	20000	Y	21.2	5σ (AB)
		J	21.1	
		Н	20.6	
		K_s	20.0	
VIDEO	15	Ζ	25.7	5σ (AB)
		Y	24.6	
		J	24.5	
		Н	24.0	
		K_s	23.5	
VVV	520	Ζ	21.9	5σ (Vega)
		Y	21.2	
		J	20.2	
		Н	18.2	
		Ks	18.1	
VIKING	1500	Ζ	23.1	5σ (AB)
		Y	22.3	
		J	22.1	
		Н	21.5	
		K_s	21.2	
VMC	184	Y	21.9	10σ (Vega)
		J	21.4	
		K_s	20.3	

VST (dedicated 2.5m telescope at Paranal)

Survey	Area [deg ₂]	Filter	Magnitude limit	Depth Measure
KIDS	1500	u'	24.1	10σ (AB)
		g′	24.6	
		r'	24.4	
		i′	23.4	
ATLAS	4 500	u'	22.0	10σ (AB)
		g′	22.2	
		r'	22.2	
		i′	21,3	
		Z'	20.5	
VPHAS+	1800	u'	21.8	10σ (AB)
		g′	22.5	
		Ηα	21.6	
		r'	22.5	
		i'	21.8	

UKIDSS Surveys – science highlights

i The coolest brown dwarfs (LAS, GPS)
ii The low-mass end of the stellar IMF (GPS)
iii Bimodal galaxy colors 0<z<2.5 (UDS)
iv The galaxy luminosity function 5<z<6 (UDS)
v Detection of Ly α emitters 7<z<9 (Narrow band)

i – The coolest Brown Dwarfs

The coolest brown dwarf UGPS 0722

Distance 4pc, 480K<T_{eff}<560K

ii. The low mass end of the stellar IMF

iii – Bimodal Galaxy Colors Quiescent galaxies to z=2

Red galaxy rest-frame SEDs

Williams, Quadri, et al. 2009, ApJ, 691, 1879

dusty

log(SSF

blue

V-J

old

Friday, January 7, 2011

Quiescent galaxies to z=2

Friday, January 7, 2011

iv. The galaxy luminosity function 5<z<6

McLure et al. 2009 bright end of the highreshift galaxy LF, from the UDS K=22.7 over 0.8 deg²

Future Prospects at 7.0<z<9.0

1. Ground-based

- UDS/VISTA surveys
- VLT HAWK-I YK imaging
- Suprime-cam z-band imaging

2. Space-based

- CANDELS survey (HST)
- SEDS survey (Spitzer)

New ground-based data in the UDS

Y-band imaging as part of VISTA/VIDEO survey (PI M. Jarvis) final depth of Y=24.6(AB); key for LBG/dwarf separation at high-z

VISTA narrow-band imaging of the UDS to identify z=7 Lyman-alpha emitters (LASER)

LASER: Ly-Alpha Sources in Epoch of Reionisation

(PI M. Jarvis; Herts, Oxford, Edinburgh, Liverpool)

First z=7 candidate from LASER

New ground-based data in the UDS

HST WFC3/IR

HAWK-I

New VLT/HAWK-I YK imaging campaign in the UDS (PI A. Fontana) pushing to YK=26 (5σ, AB) over 150 sq. arcmins

The SDSS Surveys

SDSS III

The Sloan Digital Sky Survey: I, II, III

SDSS-I (2000-2005):

- Imaging of 8400 deg², *ugriz* photometry of 230M objects
- Repeat imaging (~25 epochs) of 300 deg^2
- Spectra/redshifts of 10⁶ galaxies, 10⁵ quasars, 10⁵ stars SDSS-II (2005-2008):
- Legacy spectroscopy (fill the gap in north)
- SEGUE: 240,000 stellar spectra, 3500 deg² new imaging
- Supernova: ~75 scans of 300 deg², >500 confirmed Type Ia SNe SDSS-III (2008-2014):
- BOSS: extragalactic redshift survey
- SEGUE-2, APOGEE: Structure and formation of the Milky Way
- MARVELS: Extra-solar planets

SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, Milky Way Galaxy, Extra-Solar Planetary Systems Four surveys on three scientific themes:

BOSS: Measure cosmic expansion via baryon acoustic oscillations (BAO). Redshifts of 1.5 million LRGs to z=0.7. Ly α forest spectra of 150,000 QSOs at $z\sim2.5$.

SEGUE-2: Optical spectra of 124,000 stars to $r \approx 20$, 5 km s⁻¹ radial velocities, 0.2-dex bulk metallicities.

APOGEE: H-band spectra of 100,000 stars to $H \approx 12.5$, 0.5 km s⁻¹ radial velocities, abundances of ~15 chemical elements per star.

MARVELS: Radial velocity monitoring of 8,000 FGK stars, average 24 visits per star, ~10-40 m s⁻¹ precision.

Six-year program, started July 08, with funding from the Sloan Foundation, NSF, DOE, Participating Institutions.

SDSS-III is fully funded

Status of SDSS-III

51 institutional partners (including UK, Spain, Germany, France, Japan, Brazil) with over 500+ scientists

SEGUE-2: Observations complete. Pipeline development complete. Science analysis underway. DR8 bonanza!
MARVELS: Observations on schedule with 74k observations of 2500 stars. First discovery papers in process.
APOGEE: Spectrograph construction done and first light in

lab. Work on target selection, data pipeline underway. Commissioning and survey start in 2011.

BOSS: New imaging complete and part of DR8 bonanza! Full operations since January 2010, with 290,000 LRG spectra and 29k z>2.2 quasars

APOGEE: H-band spectra, R=20000

Sample to observe: H<13.5 300 spectra to be observed at the same time

Science with APOGEE:

- Galactic stellar populations
- Formation of the Bulge and the Inner Galaxy
- Population III stars
- Halo stars (kinematics!)
- Study of Inner Bar
- Star cluster study
- Star Formation

How to make an impact in IR astronomy?

Specialize! Be the best at something!

Examples of specializations:

- Large field of view
- Narrow band filters
- Good image quality
- Low sky background (high altitude)
- High resolution spectroscopy
- Most creative science topic
- Robotic telescope specialization

Is it a good idea to observe in N or Q (10 or 20 micron)?

At 10 micron a 4 or 8m telescope is diffraction limited (the FWHM of the airy disk is 0.1" at 10 micron on an 8m).

So for a point source the amount of background light that one gets when one observes a point source is 2x2 = 4 times smaller on an 8m than on a 4m.

One also collects $2x^2 = 4x$ as much light on an 8m.

So the S/N goes up for backgroundlimited observations (almost all) by a factor of sqrt(2x2x2x2) = 4 in the same amount of time.

 \rightarrow it is hard to compete with 8m telescope in the thermal IR

The Liverpool Telescope at La Palma

A robotic 2m telescope offering various instruments, amongst which an optical images, spectrograph and an infrared imager.

New: plans to build a new camera, the IO Camera.

- optical imager with 10'x10' field
- infrared JH imager with 6'x6' field
- Y-band filter
- small pixels (0.2")
- tip-tilt correction

Conclusion:

There is a lot still to be done in the infrared, but it will not be easy to make a large impact, since several studies are already on its way.

However, the area of infrared spectroscopy is relatively unexplored.

In any case, wide-field, multi-object capabilities are very important.